Studies of Cluster Position Correction

Kondo Gnanvo

Aiwu' slides June 02, 2014

Position correction method

• Define $\eta_N = \frac{\sum_i (s_i - s_m) q_i}{\sum_i q_i} = s_{centroid} - s_{max}$, for <u>cluster size >1</u> strip events.

 s_{max} is the strip which has maximum charge; $s_{centroid} = \frac{\sum s_i q_i}{\sum q_i}$ is the center of gravity position in terms of strip (cluster centroid position); N is cluster size.

- Mainly reference: (PhD thesis CERN-THESIS-2013-284 by Marco Villa).
- $|\eta_N| < (N-1)/4$ for odd N; $|\eta_N| < (N-2)/4$ for even N; $|\eta_2| < 1/2$. For N=2,3,4, η_N in the range of [-0.5,0.5], for N=5, η_N in [-1,1].
- The histogram for each selected N is regarded as a function $h(\eta)$.
- The new cluster centroid position in <u>strip</u> is calculated event by event:

$$s'_{centroid} = s_{max} - 0.5 + \frac{\int_{-0.5}^{\eta'} h(\eta) d\eta}{\int_{-0.5}^{0.5} h(\eta) d\eta}$$
Use boundary
-1 and 1 for N=5

3

• The new cluster centroid position for tracker is calculated by:

$$x'_{centroid} = -0.5 * planeSize + stripPitch * s'_{centroid}$$

For radial zigzag / CMS GEM:

$$6/2/2014$$
 $\varphi'_{centroid} = -0.5 * openningAngle + anglePitch * $s'_{centroid}$$

Eta distribution across the strips before and after correction for EIC

Eta distribution across the strips before and after correction for EIC

Resolution before and after correction for SBS

Resolution before and after correction for EIC: Polar coordinates

Resolution before and after correction for EIC: Cartesian coordinates

